Module Interval_intel

Interval library in OCaml. ONLY FOR INTEL PROCESSORS.

All operations use correct rounding.

It is recommended to open this module. It will put into scope the interval type and a module I (see Interval.I) containing interval operations:

open Interval_intel

let x = I.(v 0.5 1. + sin(v 3. 3.125))

When the module I is open, the integer operators (+, -,...) and the floating point ones (+., -.,...) are redefined. If, in the middle of an expression, you need to use the usual operators, locally open the module I.U as in I.(x /. U.(float(n + 1))).

The names symbols for infix operators have been chosen to try to make the standard cases short and the overall expression readable. The rationale is as follows.

You do not have to worry about remembering these rules. The type system will enforce them.

It is not mandatory, but still wise, to read the documentation of the Fpu module.

This library has been mainly designed to be used in a branch and bound optimization algorithm. So, some choices have been made:

Another design choice was to have non mutable elements in interval structure, and to maintain an "ordinary" syntax for operations, such as let a = b + c in ... thus mapping interval computation formula on airthmetic formula. We could have instead chosen to have mutable elements, and to write for example (Interval.add a b c) to perform “a ← b + c”. The first choice is, to our point of view, more elegant and easier to use. The second is more efficient, especially when computing functions with many temporary results, which force the GC to create and destroy lot of intervals when using the implementation we chose. Nothing's perfect.

The older deprecated interface is still available.

The library is implemented in x87 assembly mode and is quite efficient (see below).

Intervals (for Intel processors)

type interval = Interval_base.interval = {
low : float;(*

lower bound, possibly = -∞

*)
high : float;(*

higher bound, possibly = +∞

*)
}

The interval type. Be careful however when creating intervals. For example, the following code: let a = {low=1./.3.; high=1./.3.} creates an interval which does NOT contain the mathematical object 1/3.

If you want to create an interval representing 1/3, you have to write let a = I.(inv(v 3. 3.)) because rounding will then be properly handled by I.inv and the resulting interval will indeed contain the exact value of 1/3.

exception Division_by_zero
exception Domain_error of string
module I : sig ... end

Interval operations. Locally open this module — using e.g. I.(...) — to redefine classical arithmetic operators for interval arithmetic.

module Fpu : sig ... end

Access to low level floating point functions. THIS LIBRARY ONLY WORKS FOR INTEL PROCESSORS.

module RoundDown = Fpu.RoundDown
module RoundUp = Fpu.RoundUp
module Low = RoundDown
module High = RoundUp

Old interface (deprecated)

The functions below are the ones of the older versions of Interval. They will soon be removed.

type t = interval
val zero_I : interval

Neutral element for addition

val one_I : interval

Neutral element for multiplication

val pi_I : interval

pi with bounds properly rounded

val e_I : interval

e with bounds properly rounded

val printf_I : ( float -> string, unit, string ) Stdlib.format -> interval -> unit

Prints an interval with the same format applied to both endpoints. Formats follow the same specification than the one used for the regular printf function

val fprintf_I : Stdlib.out_channel -> ( float -> string, unit, string ) Stdlib.format -> interval -> unit

Prints an interval into an out_channel with the same format applied to both endpoints

val sprintf_I : ( float -> string, unit, string ) Stdlib.format -> interval -> string

Returns a string holding the interval printed with the same format applied to both endpoints

val float_i : int -> interval

Returns the interval containing the float conversion of an integer

val compare_I_f : interval -> float -> int

compare_I_f a x returns 1 if a.high<x, 0 if a.low<=x<=a.high and -1 if x<a.low

val size_I : interval -> float

size_I a returns a.high-a.low

val sgn_I : interval -> interval

sgn a returns {low=float (compare a.low 0.);high=float (compare a.high 0.)}

val truncate_I : interval -> interval

truncate_I a returns {low=floor a.low;high=ceil a.high}

val abs_I : interval -> interval

abs_I a returns {low=a.low;high=a.high} if a.low>=0., {low=-a.high;high=-a.low} if a.high<=0., and {low=0.;high=max -a.low a.high} otherwise

val union_I_I : interval -> interval -> interval

union_I_I a b returns {low=min a.low b.low; high=max a.high b.high}

val max_I_I : interval -> interval -> interval

max_I_I a b returns {low=max a.low b.low; high=max a.high b.high}

val min_I_I : interval -> interval -> interval

min_I_I a b returns {low=min a.low b.low; high=min a.high b.high}

val (+$) : interval -> interval -> interval

a +$ b returns {low=a.low+.b.low;high=a.high+.b.high}

val (+$.) : interval -> float -> interval

a +$. x returns {low=a.low+.x;high=a.high+.x}

val (+.$) : float -> interval -> interval

x +.$ a returns {low=a.low+.x;high=a.high+.x}

val (-$) : interval -> interval -> interval

a -$ b returns {low=a.low-.b.high;high=a.high-.b.low}

val (-$.) : interval -> float -> interval

a -$. x returns {low=a.low-.x;high=a.high-.x}

val (-.$) : float -> interval -> interval

x -.$ a returns {low=x-.a.high;high=x-.a.low}

val (~-$) : interval -> interval

~-$ a returns {low=-a.high;high=-a.low}

val (*$.) : interval -> float -> interval

a *$. x multiplies a by x according to interval arithmetic and returns the proper result. If x=0. then zero_I is returned

val (*.$) : float -> interval -> interval

x *$. a multiplies a by x according to interval arithmetic and returns the proper result. If x=0. then zero_I is returned.

val (*$) : interval -> interval -> interval

a *$ b multiplies a by b according to interval arithmetic and returns the proper result. If a=zero_I or b=zero_I then zero_I is returned

val (/$.) : interval -> float -> interval

a /$. x divides a by x according to interval arithmetic and returns the proper result. Raise Failure "/$." if x=0.

val (/.$) : float -> interval -> interval

x /.$ a divides x by a according to interval arithmetic and returns the result. Raise Failure "/.$" if a=zero_I

val (/$) : interval -> interval -> interval

a /$ b divides the first interval by the second according to interval arithmetic and returns the proper result. Raise Failure "/$" if b=zero_I

val mod_I_f : interval -> float -> interval

mod_I_f a f returns a mod f according to interval arithmetic et OCaml mod_float definition. Raise Failure "mod_I_f" if f=0.

val inv_I : interval -> interval

inv_I a returns 1. /.$ a. Raise Failure "inv_I" if a=zero_I

val sqrt_I : interval -> interval

sqrt_I a returns {low=sqrt a;high=sqrt b} if a>=0., {low=0.;high=sqrt b} if a<0.<=b. Raise Failure "sqrt_I" if b<0.

val pow_I_i : interval -> int -> interval

Pow_I_i a n with n integer returns interval a raised to nth power according to interval arithmetic. If n=0 then {low=1.;high=1.} is returned. Raise Failure "pow_I_f" if n<=0 and a=zero_I. Computed with exp-log in base2.

val (**$.) : interval -> float -> interval

a **$. f returns interval a raised to f power according to interval arithmetic. If f=0. then {low=1.;high=1.} is returned. Raise Failure "**$." if f<=0. and a=zero_I or if f is not an integer value and a.high<0.. Computed with exp-log in base2.

val (**$) : interval -> interval -> interval

a **$ b returns interval a raised to b power according to interval arithmetic, considering the restriction of x power y to x >= 0. Raise Failure "**$" if a.high < 0 or (a.high=0. and b.high<=0.)

val (**.$) : float -> interval -> interval

x **.$ a returns float x raised to interval a power according to interval arithmetic, considering the restiction of x power y to x >= 0. Raise Failure "**.$" if x < 0 and a.high <= 0

val log_I : interval -> interval

log_I a returns {low=log a.low; high=log a.high} if a.low>0., {low=neg_infinity; high=log a.high} if a.low<0<=a.high. Raise Failure "log_I" if a.high<=0.

val exp_I : interval -> interval

exp_I a returns {low=exp a.high;high=exp b.high}

val cos_I : interval -> interval

cos_I a returns the proper extension of cos to arithmetic interval Returns [-1,1] if one of the bounds is greater or lower than +/-2**53

val sin_I : interval -> interval

sin_I a returns the proper extension of sin to arithmetic interval Returns [-1,1] if one of the bounds is greater or lower than +/-2**53

val tan_I : interval -> interval

tan_I a returns the proper extension of tan to arithmetic interval Returns [-Inf,Inf] if one of the bounds is greater or lower than +/-2**53

val acos_I : interval -> interval

acos_I a raise Failure "acos_I" if a.low>1. or a.high<-1., else returns {low=if a.high<1. then acos a.high else 0; high=if a.low>-1. then acos a.low else pi}. All values are in [0,pi].

val asin_I : interval -> interval

asin_I a raise Failure "asin_I" if a.low>1. or a.high<-1. else returns {low=if a.low>-1. then asin a.low else -pi/2; high=if a.low<1. then asin a.high else pi/2}. All values are in [-pi/2,pi/2].

val atan_I : interval -> interval

atan_I a returns {low=atan a.low;high=atan a.high}

val atan2mod_I_I : interval -> interval -> interval

atan2mod_I_I y x returns the proper extension of interval arithmetic to atan2 but with values in [-pi,2 pi] instead of [-pi,pi]. This can happen when y.low<0 and y.high>0 and x.high<0: then the returned interval is {low=atan2 y.high x.high;high=(atan2 y.low x.high)+2 pi}. This preserves the best inclusion function possible but is not compatible with the standard definition of atan2

val atan2_I_I : interval -> interval -> interval

Same function as above but when y.low<0 and y.high>0 and x.high<0 the returned interval is [-pi,pi]. This does not preserve the best inclusion function but is compatible with the atan2 regular definition

val cosh_I : interval -> interval

cosh_I is the proper extension of interval arithmetic to cosh

val sinh_I : interval -> interval

sinh_I is the proper extension of interval arithmetic to sinh

val tanh_I : interval -> interval

tanh_I is the proper extension of interval arithmetic to tanh

val size_max_X : interval array -> float

Computes the size of the largest interval of the interval vector

val size_mean_X : interval array -> float

Computes the mean of the size of intervals of the interval vector

val printf_X : ( float -> string, unit, string ) Stdlib.format -> interval array -> unit

Prints an interval vector with the same format applied to all endpoints.

val fprintf_X : Stdlib.out_channel -> ( float -> string, unit, string ) Stdlib.format -> interval array -> unit

Prints an interval vector into an out_channel with the same format applied to all endpoints

val sprintf_X : ( float -> string, unit, string ) Stdlib.format -> interval array -> string

Returns a string holding the interval vector printed with the same format applied to all endpoints

val print_X : interval array -> unit

Deprecated

val print_I : interval -> unit

Deprecated

val size_X : interval array -> float

Deprecated

val size2_X : interval array -> float

Deprecated

val (<$.) : interval -> float -> int

Deprecated

val pow_I_f : interval -> float -> interval

Deprecated

val pow_I_I : interval -> interval -> interval

Deprecated

Performance

Intel Atom 230 Linux 32 bits:

Intel 980X Linux 64 bits: